Lekcja 6P – Dowody w planimetrii

<p>Po zapoznaniu się z wszystkimi pięcioma lekcjami tematycznymi czas na wykorzystanie danych twierdzeń i własności w dowodach w planimetrii. </p> <p>W lekcji szóstej podstawowej, zawierającej ponad 3 godzinne video, omawiam 30 zadań z wybranymi dowodami matematycznymi. Chcę Ci tutaj pokazać w jaki sposób podchodzić do tego typu zadań i o czym warto pamiętać przy dowodach. </p> <h3>Spis treści:</h3> <ul> <li>Zadanie 1: obwód trójkąta jest większy niż dwukrotność środkowej tego trójkąta (nierówność trójkąta) [04:43]</li> <li>Zadanie 2: trójkąt równoboczny - punkt wewnątrz trójkąta, suma jego odległości od boków trójkąta jest stała i nie zależy od wyboru tego punktu [10:41]</li> <li>Zadanie 3: trapez - dwusieczne kątów leżących przy jednym ramieniu przecinają się pod kątem prostym [17:20]</li> <li>Zadanie 4: równoległobok - kąt pomiędzy wysokościami poprowadzonymi z jednego wierzchołka równy mierze kąta ostrego [20:37]</li> <li>Zadanie 5: trójkąt - dwusieczne kątów tworzą trzy trójkąty rozwartokątne [25:52]</li> <li>Zadanie 6: trójkąt - środkowe dzielą go na sześć trójkątów o równych polach [35:15]</li> <li>Zadanie 7: trapez - punkt na środku ramienia, zależność między polem trójkąta, a polem trapezu [48:14]</li> <li>Zadanie 8: równoległobok - punkt na przekątnej, równość pól dwóch trójkątów [54:37]</li> <li>Zadanie 9: trójkąt – punkty na bokach w odpowiednich proporcjach, pole czworokąta jest 5 razy większe od pola trójkąta [1:00:05]</li> <li>Zadanie 10: na bokach kwadratu oraz na odcinku zbudowano dwa trójkąty równoboczne, wskazany trójkąt też jest równoboczny - 2 przykłady [1:05:19]</li> <li>Zadanie 11: czworokąt – poprowadzone przekątne, iloczyny pól przeciwległych trójkątów są równe [1:15:25]</li> <li>Zadanie 12: trójkąt - poprowadzona prosta przechodząca przez środek boku, odległości punktów od prostej są równe [1:21:47]</li> <li>Zadanie 13: trójkąt – dwusieczne dwóch kątów, prosta równoległa do boku przechodząca przez przecięcie dwusiecznych, zależności na odcinkach [1:25:52]</li> <li>Zadanie 14: trójkąt rozwartokątny – na najdłuższym boku odłożono odcinki równe dwóm pozostałym bokom, miara wskazanego kąta [1:29:06]</li> <li>Zadanie 15: trójkąt – jeśli środkowa równa jest połowie boku na który pada, to kąt jest prosty [1:38:05]</li> <li>Zadanie 16: trójkąt – dwusieczna, kąt przy podstawie równy połowie kąta z którego wychodzi dwusieczna, zależności na bokach [1:43:28]</li> <li>Zadanie 17: trójkąt prostokątny – wysokość podzieliła przeciwprostokątną w stosunku 1:3, zależności na kątach [1:48:04]</li> <li>Zadanie 18: trójkąt równoramienny – podział wysokości na pół, punkt na ramieniu taki, że wyszedł kąt prosty, zależność między odcinkami (trójkąty podobne) [1:54:23]</li> <li>Zadanie 19: równoległobok – na przedłużeniu boku odłożono punkt, poprowadzono prostą, która przecina drugi bok w połowie [2:00:03]</li> <li>Zadanie 20: równoległobok – na bokach zbudowano trójkąty równoboczne, równość odpowiednich odcinków [2:05:39]</li> <li>Zadanie 21: czworokąt – poprowadzone przekątne, jeśli zachodzą zależności na kątach, to wskazany trójkąt jest równoramienny [2:12:52]</li> <li>Zadanie 22: okrąg – dwie cięciwy przecinające się, podobieństwo trójkątów [2:15:53]</li> <li>Zadanie 23: okrąg opisany na czworokącie – poprowadzone przekątne, zależności na kątach [2:20:17]</li> <li>Zadanie 24: okrąg opisany na czworokącie – bok jest średnicą, zależności na odcinkach (trójkąt prostokątny wpisany w okrąg) [2:25:25]</li> <li>Zadanie 25: dwa okręgi styczne wewnętrznie, poprowadzona cięciwa, zależności na odcinkach [2:28:21]</li> <li>Zadanie 26: dwa okręgi przecinające się, średnice, współliniowość punktów [2:32:55]</li> <li>Zadanie 27: dwa okręgi styczne zewnętrznie, kąt przecięcia stycznej zewnętrznej i prostej przechodzącej przez środki okręgów [2:36:37]</li> <li>Zadanie 28: w kwadrat wpisane dwa okręgi, zależność mniejszego promienia [2:44:01]</li> <li>Zadanie 29: okrąg – styczna i cięciwa, zależności między odcinkami [2:50:12]</li> <li>Zadanie 30: dowód Twierdzenia Pitagorasa [2:55:34]</li> </ul>