

LIMITS COURSE

Lesson 2
Multiplying by the conjugate

HOMEWORK

Part 1: TEST

Select the correct answer (only one is true).

Question 1

The conjugate-multiplication method is similar to an operation taught in primary and secondary school. It is...

- a) determining the monotonicity of a sequence
- b) removing irrationality from the denominator
- c) factoring out the highest power under a root sign
- d) removing irrationality from the numerator

Question 2

$$\lim_{n\to\infty} \left(\sqrt{n} + \sqrt{n+1}\right)$$

Can we use the conjugate-multiplication method to compute the above limit?

- a) No
- b) Yes

Question 3

$$\lim_{n\to\infty} \left(\sqrt{n+1} - \sqrt{n-1}\right)$$

At this stage of the problem, by what should the expression be multiplied?

a)
$$\frac{\sqrt{n-1} + \sqrt{n-1}}{\sqrt{n-1} + \sqrt{n-1}}$$

b)
$$\frac{\sqrt{n+1} + \sqrt{n+1}}{\sqrt{n+1} + \sqrt{n+1}}$$

c)
$$\frac{\sqrt{n-1} - \sqrt{n-1}}{\sqrt{n-1} - \sqrt{n-1}}$$

$$d) \quad \frac{\sqrt{n+1} + \sqrt{n-1}}{\sqrt{n+1} + \sqrt{n-1}}$$

Question 4

Which special-product (short product) formula do we use in the conjugate-multiplication method?

a)
$$a^2 - b^2 = (a - b)(a + b)$$

b)
$$(a-b)^2 = a^2 - 2ab + b^2$$

c)
$$(a+b)^2 = a^2 + 2ab + b^2$$

Question 5

$$\lim_{n\to\infty} \left(\frac{4n}{\sqrt{3n^2 + n + 1} + \sqrt{3}n} \right)$$

After multiplying by the conjugate and tidying up, we obtained the above limit. What should be done at this stage of the problem?

- a) Write the result, i.e. 0.
- b) Cancel the common factor n in numerator and denominator.
- c) Factor out the highest powers in the denominator (first under the root sign).
- d) Write the result, i.e. 4.

Question 6

$$\lim_{n\to\infty} \left(\frac{\sqrt{n} - \sqrt{n-1}}{n^2 - n} \right)$$

At this stage of the problem, by what should the above expression be multiplied?

a)
$$\frac{\sqrt{n} + \sqrt{n-1}}{\sqrt{n} + \sqrt{n-1}}$$

$$b) \quad \frac{\sqrt{n} + \sqrt{n-1}}{n^2 + n}$$

c)
$$\frac{\sqrt{n} + \sqrt{n-1}}{\sqrt{n} + \sqrt{n-1}} \frac{n^2 + n}{n^2 + n}$$

d)
$$\frac{\sqrt{n} + \sqrt{n+1}}{n^2 + n}$$

Question 7

$$\lim_{n \to \infty} \frac{\left(\sqrt{n^4 + n^2} - n^2\right)\left(\sqrt{n^4 + n^2} + n^2\right)}{\sqrt{n^4 + n^2} + n^2}$$

What expression will appear in the numerator after applying the special-product formula?

a)
$$n^4 + n^2 + n^4$$

b)
$$n^4 + n^2 - n^4$$

c)
$$n^4 + n^2 - n^2$$

d)
$$n^4 - n^2 - n^4$$

Question 8

$$\lim_{n\to\infty}\frac{3}{\left(\sqrt{n}-\sqrt{n+7}\right)\left(\sqrt{n}+\sqrt{n+7}\right)}$$

What will the denominator of the above expression look like after applying the special-product formula?

- a) -7
- b) 7
- c) n+7
- d) n-7

Question 9

$$\lim_{n\to\infty} \frac{3n}{n\sqrt{1-\frac{2}{n}} + n\sqrt{1+\frac{4}{n}}}$$

How will this limit look after factoring the highest power out of the denominator?

a)
$$\lim_{n \to \infty} \frac{3n}{n\left(\sqrt{\frac{1}{n} - \frac{2}{n^2}} + \sqrt{\frac{1}{n} + \frac{4}{n^2}}\right)}$$

b)
$$\lim_{n \to \infty} \frac{3n}{n(\sqrt{\frac{1}{n} - \frac{2}{n^2}} + \sqrt{1 + \frac{4}{n}})}$$

c)
$$\lim_{n \to \infty} \frac{3n}{n\left(\sqrt{1-\frac{2}{n}} + \sqrt{1+\frac{4}{n}}\right)}$$

d)
$$\lim_{n\to\infty} \frac{3}{n\left(\sqrt{1-\frac{2}{n}}+\sqrt{1+\frac{4}{n}}\right)}$$

Question 10

When, in the conjugate-multiplication method, is it **not** necessary to factor out the highest powers?

- a) When, after multiplying by the conjugate, we still get a limit with an indeterminate form.
- b) When the radicals contain n only to the first power.
- c) When, after multiplying by the conjugate, we obtain a finite numerical limit.
- d) When, after multiplying by the conjugate, we no longer have an indeterminate form.

Part 2: EXERCISES

Ex. 1

Solve the following limits:

1)
$$\lim_{n\to\infty} \left(\sqrt{n+3} - \sqrt{n}\right)$$

$$2) \quad \lim_{n\to\infty} \left(\frac{7}{\sqrt{n} - \sqrt{n+1}} \right)$$

$$3) \quad \lim_{n\to\infty}\frac{\sqrt{n^2+10}-n}{n}$$

4)
$$\lim_{n\to\infty} \left(2n - \sqrt{4n^2 + 4}\right)$$

$$5) \quad \lim_{n\to\infty} \left(\sqrt{n^2+n}-n\right)$$

6)
$$\lim_{n\to\infty} \left(\frac{3n}{n-\sqrt{n^2-n}} \right)$$

7)
$$\lim_{n \to \infty} \frac{\sqrt{n^2 + 2n} - \sqrt{n^2 - 2n}}{5}$$

8)
$$\lim_{n\to\infty} \left(\sqrt{2n^2 - 4n + 7} - \sqrt{2}n \right)$$

9)
$$\lim_{n\to\infty} \left(\sqrt[3]{n+1} - \sqrt[3]{n}\right)$$

10)
$$\lim_{n\to\infty} \frac{\sqrt{n^2+6}-n}{\sqrt{n^2+2}-n}$$

11)
$$\lim_{n\to\infty} \left(\sqrt{n^4 + n^2} - \sqrt{n^4 - n^2} \right)$$

END