

LIMITS COURSE

LESSON 3
Limits using the definition of *e*

HOMEWORK

Part 1: TEST

Select the correct answer (only one is true).

Question 1

The closest common approximation to the number *e* is...

- a) 3,14
- b) 3
- c) 2,5
- d) 2,7

Question 2

For which indeterminate form do we use the formula involving the constant *e*?

- a) $\left\lceil \frac{\infty}{\infty} \right\rceil$
- b) $\lceil 1^{\infty} \rceil$
- c) $\left[\infty \infty\right]$
- d) $\left\lceil 0^{\infty} \right\rceil$

Question 3

How can the number e be defined?

- a) As a certain sequence
- b) As the limit of a certain sequence
- c) As a particular rational number
- d) As the difference of certain sequences

Question 4

$$a_n = \left(1 + \frac{1}{n}\right)^n$$

What is the limit of the above sequence?

- a) *e*
- b) 1
- c) ∞
- d) e^{∞}

Question 5

$$\lim_{n \to \infty} \left(1 + \frac{2}{n^2 + 3n} \right)^{n^2 + 3n} = e^{-4}$$

Which number should go in the blank box to make the equation true?

- a) 4
- b) -4
- c) 3
- d) -3

Question 6

$$\lim_{n\to\infty} \left(1 + \frac{-5}{n-1}\right)^{n+5}$$

How can we transform the above limit so that we can apply the formula for the number e?

a)
$$\lim_{n \to \infty} \left(1 + \frac{-5}{n-1} \right)^{n+5} = \lim_{n \to \infty} \left[\left(1 + \frac{-5}{n-1} \right)^{n-1} \right]^{\frac{n-1}{n+5}}$$

b)
$$\lim_{n \to \infty} \left(1 + \frac{-5}{n-1} \right)^{n+5} = \lim_{n \to \infty} \left[\left(1 + \frac{-5}{n-1} \right)^{n+5} \right]^{n-1}$$

c)
$$\lim_{n \to \infty} \left(1 + \frac{-5}{n-1} \right)^{n+5} = \lim_{n \to \infty} \left[\left(1 + \frac{-5}{n-1} \right)^{n-1} \right]^{\frac{n+5}{n+5}}$$

d)
$$\lim_{n \to \infty} \left(1 + \frac{-5}{n-1} \right)^{n+5} = \lim_{n \to \infty} \left[\left(1 + \frac{-5}{n-1} \right)^{n-1} \right]^{\frac{n+5}{n-1}}$$

Question 7

$$\lim_{n \to \infty} \left[\left(1 + \frac{-2}{n^2 - n + 1} \right)^{n^2 - n + 1} \right]^{\frac{3n^2 + 5}{n^2 - n + 1}} = \boxed{?}$$

$$\lim_{n \to \infty} \frac{3n^2 + 5}{n^2 - n + 1} = 3$$

What is the value of the above limit?

- a) e^{-3}
- b) e^3
- c) e^{-6}
- d) e^{-2}

Question 8

$$\lim_{n\to\infty}\left(\frac{3n+5-5+2}{3n+5}\right)^{7n}$$

How should we split the expression into two fractions so that we can apply the formula for e?

a)
$$\lim_{n\to\infty} \left(\frac{3n+5}{3n+5} - \frac{5+2}{3n+5}\right)^{7n}$$

b)
$$\lim_{n\to\infty} \left(\frac{3n+5}{3n+5} - \frac{-5-2}{3n+5} \right)^{7n}$$

c)
$$\lim_{n\to\infty} \left(\frac{3n+5}{3n+5} + \frac{-5+2}{3n+5} \right)^{7n}$$

d)
$$\lim_{n\to\infty} \left(\frac{3n+5}{3n+5} + \frac{5-2}{3n+5} \right)^{7n}$$

Question 9

$$\lim_{n \to \infty} \left(1 + \frac{4n - 1}{n^2 + 5} \right)^{n^2 + 5}$$

At this point can we already use the e-formula to state the result?

- a) Yes
- b) No, the expression still needs to be transformed

Question 10

$$\lim_{n\to\infty} \left(2+\frac{2}{n}\right)^n =$$

What is the value of the above limit?

- a) e^2
- b) *e*
- c) 0
- d) ∞

Part 2: EXERCISES

Ex. 1

Solve the following limits:

$$1) \quad \lim_{n\to\infty} \left(1+\frac{2}{n}\right)^n$$

2)
$$\lim_{n\to\infty} \left(1 + \frac{4}{n^2}\right)^{n^2}$$

$$3) \quad \lim_{n\to\infty} \left(1-\frac{7}{n}\right)^n$$

4)
$$\lim_{n\to\infty} \left(1-\frac{1}{n-2}\right)^{n-2}$$

$$5) \quad \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^{n+100}$$

6)
$$\lim_{n \to \infty} \left(1 - \frac{5}{n^2 + 3n} \right)^{2n^2 + 7}$$

7)
$$\lim_{n\to\infty} \left(\frac{n+5}{n+1}\right)^{n-4}$$

$$8) \quad \lim_{n\to\infty} \left(\frac{5n}{5n-2}\right)^{7n+11}$$

9)
$$\lim_{n\to\infty} \left(\frac{2n^2-1}{2n^2+2}\right)^{6n^2-1}$$

$$10) \lim_{n\to\infty} \left(\frac{1-n^2}{4-n^2}\right)^{7n}$$

END